SIA(M)ESE: An Algorithm for Transposition Invariant, Polyphonic Content-Based Music Retrieval

نویسندگان

  • Geraint A. Wiggins
  • Kjell Lemström
  • David Meredith
چکیده

We introduce a novel algorithm for transposition-invariant contentbased polyphonic music retrieval. Our SIA(M)ESE algorithm is capable of finding transposition invariant occurrences of a given template, in a database of polyphonic music called a dataset. We allow arbitrary gapping, i.e., between musical events in the dataset that have been found to match points in the template, there may be any finite number of other intervening events. SIA(M)ESE can be implemented so that it finds all transposition-invariant complete matches for a -dimensional template of size in a dimensional dataset of size in a worst-case running time of ; another implementation finds even the incomplete matches in time. The algorithm is generalizable to any arbitrary, multidimensional translation invariant pattern matching problem, where the events are representable by points in a multidimensional dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIA(M)ESE: An Algorithm for Transposition Invariant, Polyphonic Content-Based Music Retrieval SIA(M)ESE: An Algorithm for Transposition Invariant, Polyphonic Content-Based Music Retrieval

We introduce a novel algorithm for transposition-invariant contentbased polyphonic music retrieval. Our SIA(M)ESE algorithm is capable of finding transposition invariant occurrences of a given template, in a database of polyphonic music called a dataset. We allow arbitrary gapping, i.e., between musical events in the dataset that have been found to match points in the template, there may be any...

متن کامل

SIA(M)ESE: An efficient algorithm for transposition invariant pattern matching in multidimensional datasets

In this paper, we study pattern matching in multidimensional datasets. The aim is to find translation (transposition) invariant occurrences of a given query pattern, called template, in an arbitrary multidimensional dataset. Between the points in the dataset that have been found to match the consecutive points in the template, there may be any finite number of other intervening datapoints. For ...

متن کامل

Pattern Induction and matching in polyphonic music and other multidimensional datasets

We present a new algorithm, SIA, which discovers maximal repeated patterns in any set of points in Cartesian spaces of any dimensionality. The worst-case running time of SIA is O(kn2 log2 n) for a k-dimensional dataset of size n. SIATEC is an extension of SIA that generates a set of translational equivalence classes (TECs). If the input represents a musical score then each TEC contains all the ...

متن کامل

Dynamic Programming in Transposition and Time-Warp Invariant Polyphonic Content-Based Music Retrieval

We consider the problem of transposition and time-warp invariant (TTWI) polyphonic content-based music retrieval (CBMR) in symbolically encoded music. For this setting, we introduce two new algorithms based on dynamic programming. Given a query point set, of sizem, to be searched for in a database point set, of size n, and applying a search window of width w, our algorithms run in time O(mnw) f...

متن کامل

Towards More Robust Geometric Content-Based Music Retrieval

This paper studies the problem of transposition and time-scale invariant (ttsi) polyphonic music retrieval in symbolically encoded music. In the setting, music is represented by sets of points in plane. We give two new algorithms. Applying a search window of size w and given a query point set, of size m, to be searched for in a database point set, of size n, our algorithm for exact ttsi occurre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002